

Electromechanical Linear Actuators

Product Overview

WARNING - USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

- This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.
- The user, through its own analysis and testing, is solely responsible for making the final selection of the system
 and components and assuring that all performance, endurance, maintenance, safety and warning requirements of
 the application are met. The user must analyze all aspects of the application, follow applicable industry standards,
 and follow the information concerning the product in the current product catalog and in any other materials
 provided from Parker or its subsidiaries or authorized distributors.
- To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Parker Hannifin

The global leader in motion and control technologies

A world class player on a local stage

Global Product Design

Parker Hannifin has more than 40 years experience in the design and manufacturing of drives, controls, motors and mechanical products. With dedicated global product development teams, Parker draws on industry-leading technological leadership and experience from engineering teams in Europe, North America and Asia.

Local Application Expertise

Parker has local engineering resources committed to adapting and applying our current products and technologies to best fit our customers' needs.

Manufacturing to Meet Our Customers' Needs

Parker is committed to meeting the increasing service demands that our customers require to succeed in the global industrial market. Parker's manufacturing teams seek continuous improvement through the implementation of lean manufacturing methods throughout the process. We measure ourselves on meeting our customers' expectations of quality and delivery, not just our own. In order to meet these expectations, Parker operates and continues to invest in our manufacturing facilities in Europe, North America and Asia.

Electromechanical Worldwide Manufacturing Locations

Europe

Littlehampton, United Kingdom Dijon, France Offenburg, Germany Filderstadt, Germany Milan, Italy

Asia

Wuxi, China Jangan, Korea Chennai, India

North America

Rohnert Park, California Irwin, Pennsylvania Charlotte, North Carolina New Ulm, Minnesota

Offenburg, Germany

Local Manufacturing and Support in Europe

Parker provides sales assistance and local technical support through a network of dedicated sales teams and authorized technical distributors throughout Europe.

For contact information, please refer to the Sales Offices on the back cover of this document or visit www.parker.com

Milan, Italy

Littlehampton, UK

Filderstadt, Germany

Dijon, France

Table of Contents

Parke	er Hannifin	4
Mark	ets and Applications	6
Techn	ical Features	8
Rod-S	Style Linear Handling Actuators	11
	ETH - High Force Electro Thrust Cylinder	12
Rodle	ss Linear Handling Actuators	19
	HPLA - Linear Actuator with Plastic-Sheathed Rollers	24 32 35 38 uide 40 42

Markets and Applications

Rod-Style Linear Handling Actuators

Product	ETH	HPLA	HLR	OSP-EB	OSP-ESB
Description	High Force Electro Thrust Cylinder	Linear Actuator with Plastic- Sheathed Rollers	Linear Actuator	Belt Actuator with Internal Plain Bearing Guide	Ball Screw Actuator with Internal Plain Bearing Guide
Factory automation	-	-		-	-
Material handling	-			-	
Material forming	-				-
Machines tools	-				-
Textile machines	-	-	-	-	-
Robotics	-			-	
Packaging machines	-			-	-
Printing industry	-			-	
Automotive industry / In-plant	-	-		-	
Food, pharma & beverage	-				
Life science (Medical instruments)	-	-	-		
Life science (Diagnostic)					
See details	(Page 12)	(Page 20)	(Page 24)	(Page 32)	(Page 35)
Product catalogue	192-550017	192-580011	192-510210	PDE2705TCUK	PDE2705TCUK

3
r with
ouble
Guide
5)
DUK
200

Technical Features

Rod-Style Linear Handling Actuators

Product	ETH	HPLA	HLR	OSP-EB	OSP-ESB
Description	High Force Electro Thrust Cylinder	Linear Actuator with Plastic- Sheathed Rollers	Linear Actuator	Belt Actuator with Internal Plain Bearing Guide	Ball Screw Actuator with Internal Plain Bearing Guide
Size for product family	5	3	2	3	3
max. Stroke* [mm]	2000	9560	8230	5000	3200
max. Thrust force* [N]	114000	5457	1350	425	1500
max. Load* [N]	-	8200	5900	850	3000
max. Speed at stroke* [mm/s]	1707	5000	5000	5000	1250
max. Acceleration* [m/s²]	15	10	10	10	5
min. accuracy* [mm]	±0,03	±0,05	±0,05	±0,05	±0,05
min. Repeatability* [µm]	-	-	-	-	-
IP Protection	IP54 (IP65 optional)	IP20 (IP30 optional)	IP20	IP54	IP54
See details	(Page 12)	(Page 20)	(Page 24)	(Page 32)	(Page 35)
Product catalogue	192-550017	192-580011	192-510210	PDE2705TCUK	PDE2705TCUK

^{*} depending on size/option n.a. not available

OSP-EST	OSP-EBV	OSP-EBHD	HMR-S	HMR-B
Trapezoidal Screw Actuator with Internal Plain Bearing Guide	Vertical Belt Actuator with Integrated Ball Bearing Guide (z-axis)	Belt Actuator with Integrated Ball Bearing Guide	Ball Screw Actuator with Integrated Double Ball Bearing Guide	Belt Actuator with Integrated Double Ball Bearing Guide
3	2	4	5	5
2500	1500	7000	4000	6000
2500	1490	3120	5500	4000
1500	3000	15 000	39900	39900
150	5000	5000	1600	5000
k.A.	20	50	10	50
±0,5	±0,05	±0,05	±0,02	±0,05
-	-	-	-	-
IP54	IP20	IP54	IP54	IP54
(Page 38)	(Page 40)	(Page 42)	(Page 46)	(Page 46)
PDE2705TCUK	PDE2705TCUK	PDE2705TCUK	PDE2720TCUK	PDE2720TCUK

Parker Electromechanical Actuators

ETH

ETH - High Force Electro Thrust Cylinder

Overview

Description

The ETH electro cylinder closes the gap between pneumatic and hydraulic actuators; it can act as a suitable alternative to both in many applications and can have the added benefit of increasing the reliability of the production process. Taking the costs for air and oil into consideration, you will find that in most cases an electromechanical system such as the ETH electro cylinder offers the more economical solution. Combined with a wide choice of accessories, the ETH becomes a highly customisable solution, suitable for a variety of applications.

Typical applications

- · Material handling and feed systems
 - · wood working and plastics industries
 - · vertical actuators for loading machine tools
 - in the textile industry for tensioning / gripping textile fabrics
 - in the automotive industry for transporting and feeding components
- Testing equipment and laboratory applications
- · Valve and flap actuation
- Pressing
- Packaging machinery
- Process automation in the food and beverage industry

Features

- Unrivaled power density high forces and small frame sizes
- · Cabling can be concealed in the profile
- Accessories with integrated force sensors help to spread and even to control forces precisely
- Optimized for safe handling and simple cleaning
- · High service life
- Reduced maintenance costs thanks to lubricating access in the cylinder flange
- Easy replacement due to pneumatic ISO flange norm (DIN ISO 15552:2005-12) conformity
- · Integrated anti-rotation device
- · Reduced noise emission
- All from one source:
 We offer the complete drive train: Drive controllers, motors and gearboxes to match the Electro Cylinder

Technical Characteristics - Overview

Туре	ETH Electro Cylinder
Frame sizes	ETH032 / ETH050 / ETH080 / ETH100 / ETH125
Screw lead	5, 10, 16, 20 mm
Stroke	up to 2000 mm
Traction/thrust force	up to 114000 N
Speed	up to 1.3 m/s
Acceleration	up to 15 m/s ²
Equivalent dynamic axial force at a lifetime of 2500 km	up to 49 600 N
Efficiency	up to 90 %
Repeatability	up to ± 0.03 mm
Protection classes	IP54 IP54 with stainless steel screws IP65
Drive	Inline: Axial drive or parallel drive with high performance toothed belt
Directives	2011/65/EC: Conform to RoHS RoHS
	2014/34/EU Equipment group II Category 2, authorized for gas atmospheres zone 1 and zone 2
	ETH032, 050: (II 2G Ex h IIC T4 Gb
Classification	ETH080: (Exh IIB T4 Gb
	Conformity certificate number: EPS 13 ATEX 2 592 X (X: there are special specification of use, please observe the intended use of the ATEX Cylinder)

We also offer customized solutions:

If your application requires a special version of the ETH cylinder, please contact your local Parker Sales Office.

- · Customized mountings and rod ends
- Mounting of customer motors
- Preparation of the cylinder for use under aggressive environmental conditions
- · Overlong thrust rod
- · Polished thrust rod
- Thrust rod hard-chrome plated

Product Design

Ballscrew

A high-quality precision class 7 ballscrew in accordance with ISO 3408 is used. The ball bearings between screw and nut ensure a low frictional resistance. This ensures an especially smooth operation over the entire speed range, high service life and excellent efficiency.

Screw support bearing (front end)

The front screw support bearing is supported by a polymer sliding bearing. This eliminates vibration and run-out. The result is quieter, smoother motion with better precision, longer screw life, and increased dynamic performance.

Piston Rod Anti-rotation Guidance

One of the unique design changes in the ETH is a new anti-rotation device. The high quality, maintenance free polymer bushing offers robust guidance preventing the piston rod from twisting as the rod extends and retracts.

Extruded cylinder body

The extrusion design reduces the number of slots or grooves for a cleaner overall design. The only slots are there for sensor mounting and are easily covered to eliminate any area for debris to be trapped. The result is a cleaner, more environmentally friendly design.

Screw Support Bearing (motor end)

A double stacked set of angular contact bearings allows for high thrust forces in both the extend and retract directions. The result is a design with high force density and minimal clearance when changing directions of motion.

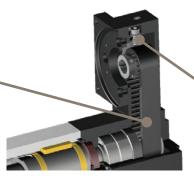
Easy Lubrication Port

The integrated lubrication fitting allows quick, simple and easy access to regrease the ball screw. In the event the rear is inaccessible the port can be located in the center of the extrusion (optional) The result is reduced down time for product maintenance yielding a higher ROI and a longer product life.

Piston Rod Support Bearing & Protection

The extra long cylinder rod bearing allows high lateral load forces. A wiper ring prevents the ingress of external contamination under normal conditions. In the event of fine dust, a high amount of dirt as well as muds and liquids, special sealing is required, which is available on request.

Sensors


The sensors are directly integrated into the profile; avoiding projecting edges. Cabling is neatly hidden under the yellow cover (fitting sensors available as accessories).

Permanent magnet

All electro cylinders are equipped with several permanent magnets integrated into the screw nut. The permanent magnets actuate the sensors, which can be mounted in the longitudinal grooves of the cylinder body.

Toothed belt transmission

The slip and wear free toothed belt transmission for parallel drive cylinders (motor mounted parallel to the cylinder) features a high efficiency and a transmission ratio of 1:1.

Belt tensioning device

A sophisticated belt tensioning device for parallel motor mounting allows the toothed belt to be pre tensioned precisely.

Technical Characteristics

Cylinder size	Unit	ETH032				ETH050		ETH080		
type		M05	M10	M16 ⁴⁾	M05	M10	M20 ⁴⁾	M05	M10	
Screw lead	[mm]	5	10	16	5	10	20	5	10	
Screw diameter	[mm]		16			20		3	2	
Travels, speeds and accelerations										
Available strokes 1) 2)	[mm]		continuous from 50-		continuous from 50- 1200 & standard strokes				from 100-	
		1000 &	standard	strokes	1200 &	standard	strokes	1600 & standard strokes		
Max. permissible speed at stroke =				400=			1000		500	
50-400 mm	[mm/s]	333	667	1067	333	667	1333	267	533	
600 mm	[mm/s]	286	540	855	333	666	1318	267	533	
800 mm	[mm/s]	196	373	592	238	462	917	267	533	
1000 mm	[mm/s]	146	277	440	177	345	684	264	501	
1200 mm	[mm/s]	-	-	-	139	270	536	207	394	
1400 mm	[mm/s]	-	-	-	-	-	-	168	320	
1600 mm	[mm/s]	-	-	-	-	-	-	140	267	
Max. Acceleration	[m/s ²]	4	8	12	4	8	15	4	8	
Forces										
Max. axial traction/thrust force motor inline	[N]		3700	2400		7000	4400		25 100	
Max. axial traction/thrust force ³⁾ Motor parallel	[N]	3600	3280	2050	9300	4920	2460	17800	11620	
Equivalent dynamic axial force at a lifetime of 2500 km	[N]	1130	1700	1610	2910	3250	2740	3140	7500	
Max. transmissible torque / force con	stant									
Max. transmissible torque inline motor	[Nm]	3.2	6.5	6.8	8.2	12.4	15.6	15.7	44.4	
Max. transmissible torque 3) Motor parallel	[Nm]	3.5	6	.4	9.1	9.1 9.3		17.5	22.8	
Force constant motor inline 5)	[N/Nm]	1131	565	353	1131	565	283	1131	565	
Force constant motor parallel ⁵⁾	[N/Nm]	1018	509	318	1018	509	254	1018	509	
Weight ⁶⁾										
Weight of base unit with zero stroke (incl.										
piston rod)	[kg]	1.2	1.2	1.4	2.2	2.2	2.4	7.1	7.5	
Additional weight of inline unit	[kg]		0.7		1.0			3.2		
Additional weight of parallel unit	[kg]		0.8			1.0		3.1		
Mass of additional stroke (incl. piston rod)	[kg/m]		4.5			8.2			3.2	
Weight of piston rod with zero stroke	[kg]		0.06			0.15		0.59		
Weight of piston rod - additional length	[kg/m]		0.99			1.85		4.	93	
Mass moments of inertia										
Motor parallel without stroke	[kgmm ²]	8.3	8.8	14.1	30.3	30.6	38.0	215.2	213.6	
Motor inline without stroke	[kgmm ²]	7.1	7.6	12.9	25.3	25.7	33.1	166.2	164.5	
Parallel/inline motor per meter	[kgmm ² /m]	41.3	37.6	41.5	97.7	92.4	106.4	527.7	470.0	
Accuracy: Bidirectional Repeatability	(ISO230-2)									
Motor inline	[mm]					±0.03				
Motor parallel	[mm]					±0.05				
Efficiency										
Motor inline the efficiency includes	[%]					90				
Motor parallel all friction torques	[%]					81				
Ambient conditions										
Operating Temperature	[°C]					-10+70				
Ambient temperature	[°C]					-10+40				
Storage temperature	[°C]					-20+40				
Humidity	[%]						ndensing			
Location height range	[m]				I	max. 300	0			

¹⁾ "Order Code" (page 52) & "Preferred Stroke Length" (page 54), ²⁾ Intermediate stroke lengths may be interpolated.

³⁾ Applies only for motor speed < 100 min⁻¹. Transmissible torque depending on the motor speed n Motor parallel see page 15,

⁴⁾ ATEX on request only, ⁵⁾ The efficiency factors are included in the force constants.

⁶⁾ Weight without rod-end and mounting option.

Cylinder size		Unit	ETH	I100	ETH125				
type			M10	M20	M10	M20			
Screw lead		[mm]	10	20	10	20			
Screw diameter		[mm]	5	0	6	3			
Travels, speeds an	d accelerations								
Available strokes 1)2)		[mm]		s from 200-	continuous from 200-				
		[]	2000 & stan	dard strokes	2000 & stan	dard strokes			
Max. permissible spee	ed at stroke =								
100-400 mm		[mm/s]	400	800	417	833			
500 mm		[mm/s]	400	747	417	807			
600 mm		[mm/s]	333	622	395	684			
800 mm		[mm/s]	241	457	290	514			
1000 mm		[mm/s]	185	354	224	405			
1200 mm		[mm/s]	148	284	180	329			
1400 mm		[mm/s]	122	235	148	275			
1600 mm		[mm/s]	102	198	125	234			
2000 mm		[mm/s]	76	148	94	170			
Max. Acceleration		[m/s ²]	8	10	8	10			
Forces									
Max. axial traction/thru		[N]	E 4 0 0 0	56 000	88700	114000			
Max. axial traction/thru Motor parallel	ust. ³⁾	[N]	54800	50800	76300	81 400			
	kial force at a lifetime of								
2500 km		[N]	18410	27100	27 140	49 600			
Max. transmissible	torque / force const	ant							
Max. transmissible tor	que inline motor	[Nm]	100	200	150	400			
Max. transmissible tor	que. ³⁾	[Nm]	108	200	150	320			
Motor parallel									
Force constant motor		[N/Nm]	565	283	565	283			
Force constant motor	parallel ⁴⁾	[N/Nm]	509	254	509	254			
Weight 5)	Un manufacture to the control of the								
Weight of base unit wit (incl. piston rod)	tn zero stroke	[kg]	21	24	56	64			
Additional weight of in	line unit	[kg]	1	2	2	7			
Additional weight of pa		[kg]	2	1	51				
Mass of additional stro		[kg/m]	3	8	62				
Weight of piston rod w		[kg]	1	.2	2.9				
Weight of piston rod -	additional length	[kg/m]	7	.7	14	1.4			
Mass moments of	inertia								
Motor parallel without	stroke	[kgmm ²]	5860	6240	17050	17990			
Motor inline without st	roke	[kgmm ²]	2240	2620	12960	13400			
Parallel/inline motor pe	er meter	[kgmm ² /m]	4270	4710	10070	10490			
Accuracy: Bidirect	ional Repeatability (IS	SO230-2)							
Motor inline		[mm]		±0	.03				
Motor parallel		[mm]		±0	.05				
Efficiency									
Motor inline	the efficiency includes all	[%]		9	0				
Motor parallel	friction torques	[%]							
Ambient conditions	s								
Operating Temperature	е	[°C]							
Ambient temperature		[°C]	-10+40						
Storage temperature		[°C]	-20+40						
Humidity		[%]		•	n-condensing				
Location height range		[m]		max.	3000				
1) "Order Code" (page 52)	2) Intermediate stroke length	ne may ha inte	rnolated						

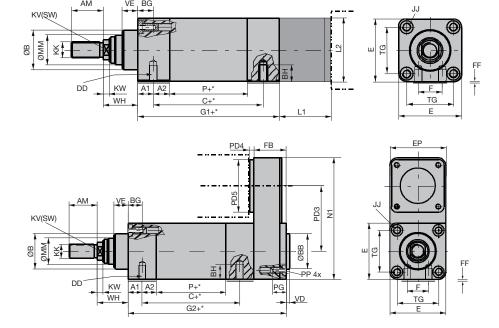
 $^{^{\}rm 1)}\,$ "Order Code" (page 52), $^{\rm 2)}$ Intermediate stroke lengths may be interpolated.

Technical Data apply under normal conditions and only for the individual operating and load modes. In the case of compound loads, it is necessary to verify in accordance with normal physical laws and technical standards whether individual ratings should be reduced. In case of doubt please contact Parker.

Applies only for motor speed < 100 min⁻¹. Transmissible torque depending on the motor speed n Motor parallel see page 15,

⁴⁾ The efficiency factors are included in the force constants, ⁵⁾ Weight without rod-end and mounting option..

Dimensions


Electro Cylinder

prepared for inline motor mounting

Electro Cylinder

prepared for parallel motor mounting

+* =Measure + length of desired stroke

Dimensions Standard & ATEX (IP-Version)

Cylinder size	Unit	E	ETH032	2		ETH05)	ETH	1080	ETH	l100	ETH	125
Screw lead		M05	M10	M16	M05	M10	M20	M05	M10	M10	M20	M10	M20
С	[mm]	93.6 (93.6)	102.6 (102.6)	106.6 (106.6)	99.5 (100.5)	105.5 (106.5)	117.5 (118.5)	141.5 (142.5)	159.5 (160.5)	-	2)	-	
G1	[mm]	133 (180.5)	142 (189.5)	146 (193.5)	154 (198.5)	160 (204.5)	172 (216.5)	197 (259.5)	215 (277.5)	323 (349.5)	361 (387.5)	461 (487.5)	549 (575.5)
G2	[mm]	180.5 (228.5)	189.5 (237.5)	193.5 (241.5)	194 (239)	200 (245)	212 (257)	257 (320)	275 (338)	451 (478.0)	489 (516.0)	624 (651.0)	712 (739.0)
P	[mm]	66	75	79	67	73	85	89	107	162	200	192	280
A1	[mm]		14 (60)			15.5 (58.5	i)	21	(82)	-	2)	-	2)
A2	[mm]		17			18.5		3	2	-	2)	2	2)
AM	[mm]		22			32		4	0	7	0	9	6
BG (=BN+BS)	[mm]		16			25		2	6	3	2	4	4
BN Usable length of thread	[mm]		11			20		2	0	2	2	3	3
BS Depth of width across flat (without thread)	[mm]		5			5		(6		0	1	1
BH	[mm]		9		12.7			18.5		_ 2)		_1	
DD mount thread 1)	[mm]		M6x1.0		M8x1.25			M12x1.75		_ 2)		_2)	
E	[mm]		46.5		63.5			95		120		15	50
EP			46.5		63.5			95		175		220	
F	[mm]		16		24			30		_ 2)		_2)	
FF	[mm]		0.5		0.5			1.0		0		0	
JJ	[mm]		M6x1.0			M8x1.25		M10x1.5		M16x2		M20x2.5	
PP	[mm]		M6x1.0			M8x1.25		M10x1.5		M16x2		M20x2.5	
PG (Thread depth on the PA housing)	[mm]	ВС	G (=BN+E	BS)	В	G (=BN+E	BS)	BG (=BN+BS)		2	6	35	
KK	[mm]	1	M10x1.25	5		M16x1.5		M20	x1.5	M4	2x2	M4	8x2
KV	[mm]		10			17		2	2	4	6	5	5
ØMM h9	[mm]		22			28		4	5	7	0	8	5
TG	[mm]		32.5			46.5		7	2	8	9	10)5
KW	[mm]		5			6.5		1	0	1	0	1	0
N1	[mm]		126			160		23	3.5	34	47	45	50
FB	[mm]		47.5 (48)			40 (40.5)		60 (6	60.5)	128 (128.5)	163 (1	63.5)
VD	[mm]		4			4		4		4		5	
ØBB	[mm]		30 d11			40 d11			45 d11		90 d9		d8
VE	[mm]		12		16			2	0	20		20	
WH	[mm]		26			37		4	6	51		53	
ØB	[mm]		30 d11			40 d11		60	d11	90 d8		110	d8

 $[\]ensuremath{^{(1)}}$ Thread "DD" is only mandatory for mounting method "F".

²⁾ ETH100, ETH125 does not have a mounting thread on the underside.

Accessories for ETH cylinder

Outrigger bearing

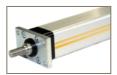
Function of outrigger bearing:

- · Additional stability and precision
- Anti-rotation device for higher torques
- Absorption of lateral forces

Initiators / Limit switches

Mounting methods

Foot mounting


Mounting flanges

Centre trunnion mounting

Front and rear plate

Rear clevis

Rear eye mounting

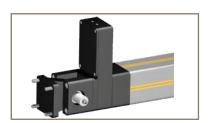
Cylinder rod version

External thread

Internal thread

Rod clevis

Sperical rod eye



Force sensor

Joint head with integrated force sensor

Rod clevis with force sensor

Motor and amplifier

Servo amplifier

For additional information please see our website www.parker.com/eme

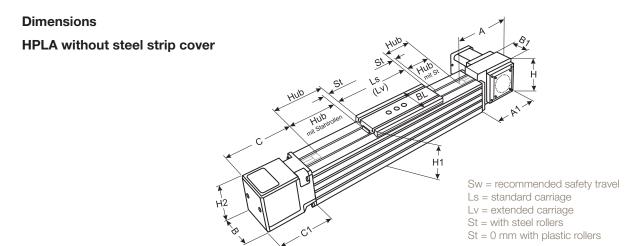
Motors and gears

For additional information on motors please see our website www.parker-eme.com and for gears www.parker.com/eme/gear

Parker Electromechanical Actuators

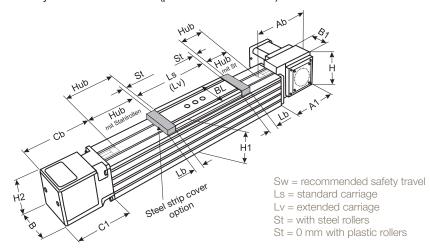
HPLA - Linear Actuator with Plastic-Sheathed Rollers

For guiding, moving and positioning, even over long travels, we offer the HPLA linear actuator:


- Travels up to 20 meters
- High speeds up to 5 m/s
- High payloads up to 1600 kg
- Nominal drive torque up to 244 Nm
- Nominal thrust force up to 5500 N
- Repeatability up to ±0.05 mm
- High mechanic efficiency

Specifications

Frame sizes		HPLA	080 A	HPL	A 120	HPL	A 180
Roller guiding system		Plastic	Steel	Plastic	Steel	Plastic	Steel
Weight of base unit without stroke							
HPLA with standard carriage	[kg]	6.0	6.6	18.6	19.8	49.8	53.4
HPLA with steel strip cover	[kg]	6.8	7.5	20.2	21.6	57.2	61.6
HPLA with extended carriage	[kg]	7.8	8.6	23.5	25.2	67.4	72.6
HPLA with steel strip cover	[kg]	8.6	9.5	25.2	27.1	74.8	80.9
Weight of standard carriage & load attachment plate	[kg]	1.5	1.6	5.5	5.7	11.4	11.8
HPLA with steel strip cover	[kg]	1.7	1.8	5.8	6.0	12.3	12.6
Weight of extended carriage & load attachment plate	[kg]	2.4	2.6	8.5	8.9	20.3	21.0
HPLA with steel strip cover	[kg]	2.6	2.8	8.8	9.2	21.1	21.8
Additional weight per meter of stroke	[kg/m]	6.0	7.2	13.5	15.4	29.2	33.4
Weight with steel strip cover	6.1	7.3	13.7	15.5	29.4	33.6	
Travel lengths and speeds							
Max. travel speed	[m/s]				5.0		
Max. acceleration	[m/s ²]			10	0.0		
Max. travel path (standard carriage)	[mm]	5610	5590	9560	9530	9440	9400
ditto with steel strip cover	[mm]	5540	5520	9470	9440	9240	9200
Max. travel path (extended carriage)	[mm]	5460	5440	9360	9330	9140	9100
ditto with steel strip cover	[mm]	5390	5370	9270	9240	8940	8900
Overall dimensions and physical data of guidi	ng profil	е					
Section	[mm]	80 >	k 80	120 >	k 120	180	k 180
Forces and torques							
max. drive torque	[Nm]	3		9			65
max. Thrust force	[N]	11	14	22	34	54	57
Repeatability up to 3 m ⁽¹⁾	[mm]	±0		±0	.05		.05
Repeatability from 3 m ⁽¹⁾	[mm]	±C).1	±C).1	±C).1
Toothed pulley and toothed belt data							
Travel distance per revolution	[mm/U]	180		27	70	420	
Number of teeth of pulley		1	8	2	7	21	
Toothed belt width / pitch	[mm]	25,	10	32	10	56/20	


⁽¹⁾ at a constant ambient and operating temperature

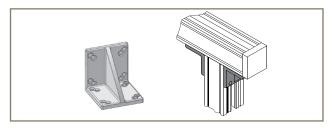
	HPLA with toothed belt without steel strip cover													
	В	B1	BL	Н	H1	H2	A1	Α	С	C1	Ls	Lv	St	
HPLA 80	80	46	76	100	100	80	144	164	128	108	250	400	10	
HPLA 120	120	60	110	135	143	120	185	205	160	140	300	500	13	
HPLA 180	180	95	170	213	215	180	265	293	263	235	400	700	20	

HPLA with steel strip cover

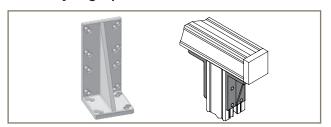
The optional steel strip cover is perfectly integrated into the linear actuator design and protects timing belt, rollers and the running surfaces of the profile reliably from contamination (protection class IP30).

	HPLA with toothed belt and steel strip cover													
	В	B1	BL	Н	H1	H2	A1	Ab	Cb	C1	Ls	Lv	Lb	St
HPLA 80	80	46	76	100	100	80	144	199	163	108	250	400	40	10
HPLA 120	120	60	110	143	143	120	185	250	205	140	300	500	50	13
HPLA 180	180	95	170	215	215	180	265	393	363	235	400	700	100	20

Advantages of plastic roller guiding:

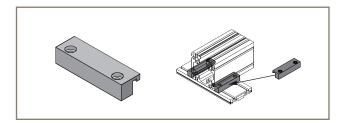

- clean operation, as the travel surface is free of lubricants
- · low maintenance

Advantages of steel roller guiding on an integrated steel strip:

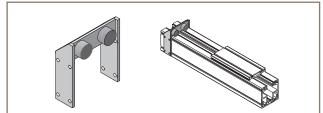

- · high load bearing capacity
- high stiffness

Accessories for Toothed Belt Actuators

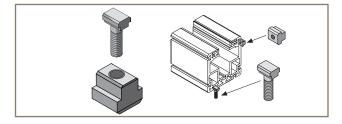
Assembly angle plate isosceles


Assembly angle plate scalene

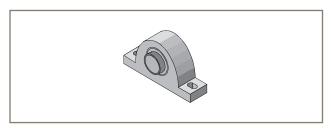
The assembly angle plates are used to connect linear actuators to the basic structure (as support, you may use a Parker profile), or with your construction elements.


Toe Clamp

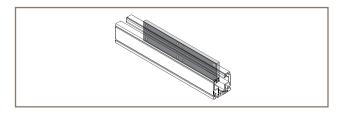
The toe clamps are used in conjunction with the standard load attachment plate to rapidly install and attach various combinations of linear actuators.


External stop buffer

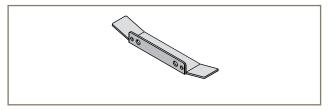
The external stop buffer is mounted in the grooves of the profile and can be adjusted infinitely.


T-Nuts and bolts

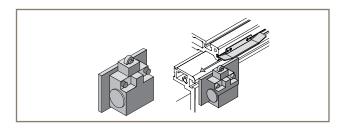
The T nuts and bolts can be used to attach other components in the T-slots of the profile, or on the upper side of the load attachment plate.


Intermediate shaft bearing for double actuators

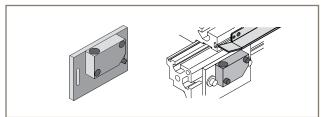
The intermediate shaft bearing is used to support the connection shaft of a double actuator in the event of a long axis distance. The intermediate shaft bearing must be used if the critical rotational speed is exceeded with the double actuator connection shaft.


Longitudinal flanges

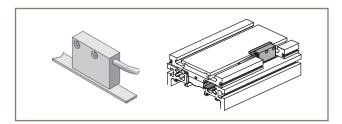
The working stroke can be more than doubled when using the flange plates. A longitudinal flange is required if the travel path exceeds the profile length.


Tripping plate

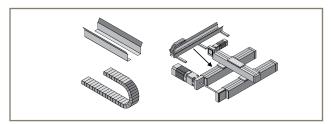
The tripping plate is suitable for all standard load flange plates.


Mechanical limit switch

Switching button as per DIN EN50047. The contacts satisfy the safety requirements by forced opening.


Electrical limit switches

The sensor is activated by a tripping plate on the side on the flange plate.


Linear Encoder

The use of a liner encoder increases the static position stiffness of the linear actuator as well as the control properties and positioning accuracy. An additional cable carrier is required due to the moving sensor.

Cable carrier

A cable carrier is needed when making power connections to moving elements. Use only electrical cables which are suitable for use in cable carriers.

Motor and amplifier

Servo amplifier

For additional information please see our product catalog 192-490123 or our website www.parker.com/eme

Motors and gears

For additional information on motors please see our website www.parker-eme.com/sm and for gears www.parker.com/eme/gear

Other accessories / software

DimAxes

Dimensioning tool for Parker linear actuators, for PC from Windows version 95 Download free of charge from:

http://www.parker-eme.com/dimaxes

Belt tension measuring device RSM

For accurately setting the toothed belt tension.

HLR - High Load Rodless Linear Actuator

Overview

Description

HLR is a linear actuator specially designed for the use in OEM applications.

The HLR is a belt driven/linear guided drive system offering a very high load capacity with an extermely small form factor.

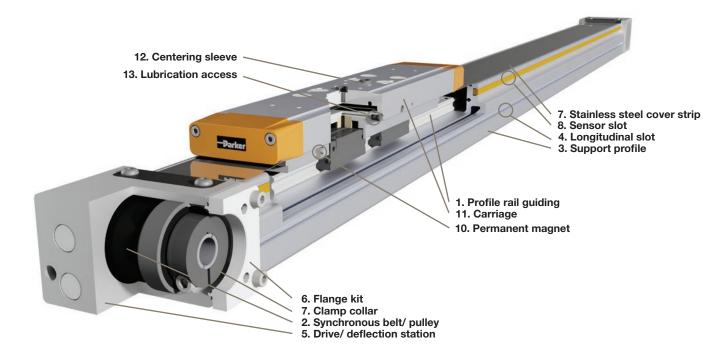
Its compact outer dimensions und a variety of stroke steps make it ideal for a wide range of automation appplications.

With its technical data, the HLR family meets the requirements in industrial applications.

Combined with a wide choice of accessories it offers a very quick and easy way to build multi-axis solutions. The predefined drive trains simplify the sizing and selection process and reduce development time.

Features

- Compact outside dimensions of 69 x 64 mm and 82 x76.5 mm
- Rigid aluminum extrusion profile for self-supporting solutions
- High load capacity up to 3847 N (based on a theoretical lifetime of 8.000 km)
- High thrust force up to 900 N
- Motor can be mounted on four sides for highest flexibility
- Acceleration up to 50 m/s²
- Velocity up to 5 m/s
- Last generation linear guide and timing belt for minimised noise emission
- Stainless steel cover as standard for the use in harsh environment
- Easy accessible lubrication bore for reduced maintenance effort
- Extreme straight movement over the complete stroke for building up reliable multi-axis solutions
- High repeatability for highest customer requirements.


Technical Characteristics - Overview

Actuator size	HLR070	HLR080				
Drive	Belt drive					
Guiding System	Linear	guide				
Width x Height [mm]	69x64	82x76.5				
Max. normal load Fz [N]	38	47				
Max. thrust force Fx [N]	500	900				
Repeatability [mm]	±0	.05				
Max. velocity [m/s]	Į	5				
Max. acceleration [m/s²]	5	0				
Max. travel length [mm]	2500	3500				
Distance [mm/rev]	105	125				
Conformity	2011/65/EG: R	OHS compliant				
	RoHS					
Protection class	IP-	40				

Application

- Material handling and feed systems
- · Packaging machines
- General-purpose applications

Product design

Profile rail guiding (1)

The integrated square rail guide ensures precise and backlash-free linear motion with constant running characteristics and simultaneously high load capacity and travel speed. In conjunction with the synchronous belt (2) and the synchronized pulleys, high feed forces, high repeatability and smoothness are achieved.

Support profile (3)

A lightweight, compact and selfsupporting aluminium profile with one longitudinal groove (4) at each side and two at the bottom, which can be used for mounting the linear actuator or other mechanical components.

Drive/ deflection stations (5)

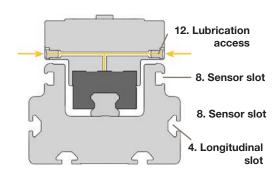
The symmetrically designed drive and deflection stations allow flexible mounting of the drive on each side of the linear actuator. With the optionally available flange kits (6), the drive can be moved to the other station or side at any time by the customer.

The clamping point (7) integrated directly in the drive station enables a direct and very compact connection of the drive to the linear actuator.

Stainless steel cover strip (8)

The stainless steel cover embedded in the support profile is reliably held in place by the magnetic strips integrated in the carrier profile and protects the internal guide against coarse contamination from the outside.

Sensor slot (9)


The sensor slots integrated in the profile on both sides enable the integration of several proximity sensors. These can be attached directly to the support profile at any position and without protruding edges. The sensors are actuated by the permanent magnets (10) integrated in the carriage on both sides. The cables of the sensors can be routed along the linear actuator with the aid of the yellow cover strips.

Carriage (11)

The carriage is available in two standard lengths for each frame size and has several mounting threads for fastening loads. In conjunction with the optionally available toe clamps, the mounting threads allow a cost-effective realisation of a multi-axis system.

The centering sleeves (12) integrated as standard in the carriage allow fast and precise alignment of the load on the carriage.

For relubrication of the internal guide, the carriage has several lubrication accesses (13). These are accessible from both sides of the carriage, making maintenance easier.

In addition to the two sizes of HLR linear actuators, Parker offers an accessory package not only for single-axis applications, but also for complete double or multi-axis systems.

Pre-defined drive packages (13)

Parker Hannifin also offers the complete drive and control packages for a wide range of applications to match the HLR linear actuators. By using the predefined drive packages, consisting of linear actuator, motor, gearbox and servocontroller, a complete drive train can be quickly selected for the desired application.

Double axis applications

The connecting shaft (14) ensures synchronous and very rigid transmission of the drive torque to a second HLE Linear actuator arranged in parallel. This makes dual axis applications very simple and cost-effective to implement. The connecting shaft is optionally available in different lengths, which allows different center distances to be realized.

For very short centre distances or pure support axes, there is the option of a non-driven, idler axis (15). Here the connecting shaft can be dispensed with and the load can be mounted directly on the carriage of the driven and the idler axes.

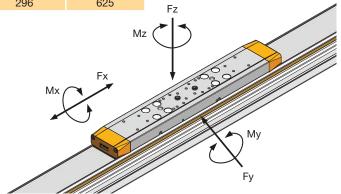
Toe clamp assembly (16)

Toe clamps in different lengths are available for mounting the HLR linear actuators. These grip into the longitudinal slots in the profile and offer a quick and convenient method of fastening. Alternatively, the longitudinal slots in the support profile and slot nuts can also be used. With the toe clamps, one or two cross beams can be fastened directly to the carriage of the HLR linear actuators. This means that no additional connection plates are required and the overall height of the multi-axis system is minimised.

Z-axis connection (17)

With the optionally available mounting plates ETH and ETT can be mounted as z-axis in sizes 032 and 050 as well as the OSP-E20BV directly on the carriage of the HLR linear actuators.

The ETH electric thrust cylinders can also be connected with parallel guidance.

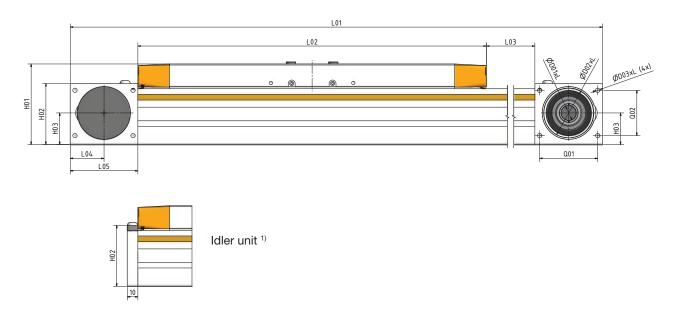

Connection of additional components (18)

Connection of further actuators and energy chains, grippers, etc. is easily possible by the customer by means of the longitudinal slots in the support profile or via the mounting threads in the carriage.

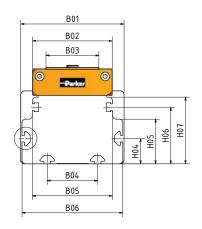
Technical Characteristics

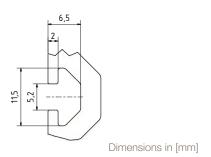
Axis size		HLR070	HLR080
Drive type		Toothed b	pelt drive
Guiding System		Square ra	ail guide
Principle dimensions			
Axis cross section incl. carriage (width x height)	[mm ²]	69 x 64	82 x 76.5
Max. stroke 1)	[mm]	2500	3500
Carriage A (Standard)	[mm]	372	458
Carriage B (Extended)	[mm]	412	510
Zero stroke with carriage A	[mm]	262	330
Zero stroke with carriage B	[mm]	302	382
Velocity & acceleration			
Max. travel speed	[m/s]	5	i
Max. acceleration	[m/s ²]	50	0
Loads & life times 2)			
Max. drive torque	[Nm]	8.3	18
Idling torque M ₀ ³⁾	[Nm]	0.35	0.55
Max. Thrust force F _{x max} ⁴⁾	[N]	500	900
Max. Lateral force (Carriage A / Carriage B) F _{y_max}	[N]	2 628 / 3 847	60.47
Max. load force (carriage A / carriage B) F _{z_max}	[N]	2 628 / 3 847	3847
Max. Tilting torque (carriage A / carriage B) M _{x max}	[Nm]	21 / 30	30
Max. pitching torque (Carriage A / Carriage B) M _{y max}	[Nm]	80 / 164	164 / 262
Max. Yaw torque (Carriage A / Carriage B) M _{z max}	[Nm]	80 / 164	164 / 262
Pulley data			
Effective circular diameter	[mm]	33.4	39.8
Feed constant per revolution	[mm]	105	125
Weights			
Zero stroke weight with carriage A	[kg]	3.3	5.6
Zero stroke weight with carriage B	[kg]	3.6	5.9
Weight of additional length/ stroke (without carriage)	[kg/m]	4.8	6.6
Zero stroke weight of idler axis with carriage A	[kg]	2.3	3.8
Zero stroke weight of idler axis with carriage B	[kg]	2.7	4.3
Weight of additional length/ stroke of idler axis	[kg/m]	4.6	6.3
Accuracy			
Repeatability (according to ISO 230-2)	[mm]	±0.05	±0.05
Area moment of inertia			
Area moment of inertia	[10 ⁴ mm ⁴]	15.7	35.1
Ambient conditions			
Ambient temperature	[°C]	-10	.+40
Storage temperature	[°C]	-20	.+40
Humidity (no condensation)		09	5%
Protection class		IP4	10
Mass moment of inertia relative to the drive sha	aft		
Zero stroke with carriage A	[kgmm ²]	314	752
Zero stroke with carriage B	[kgmm ²]	372	829
Additional length/ stroke (without carriage)	[kgmm²/m]	53	113
Idler axis with carriage A (stroke independent)	[kgmm ²]	240	554
Idler axis with carriage B (stroke independent)	[kgmm ²]	296	625
Min. stroke = 100 mm. Available standard strokes see oder cod			

¹⁾ Min. stroke = 100 mm. Available standard strokes see oder code


²⁾ Based on a theoretical lifetime of 8.000 km under ideal conditions

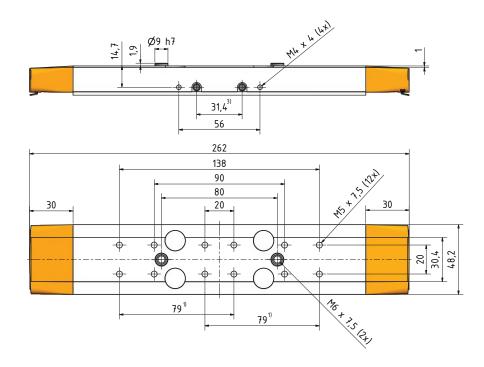
 $^{^{3)}}$ Relative to the velocity of 100mm/s with tolerance +/-10% $\,$


⁴⁾ Thrust force dependent on travel speed, see diagram2

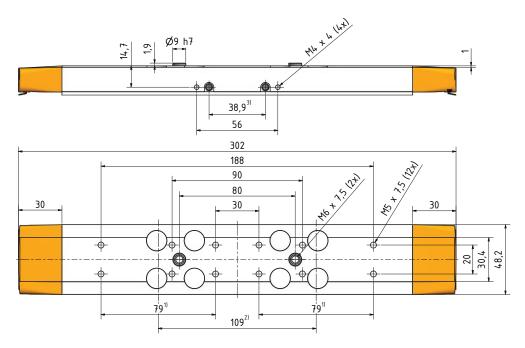

Dimensions

Main dimensions

Frame size		HLR070	HLR080
L01	[mm]	L02 + 2 x L	05 + stroke
L02 (carriage A / B)	[mm]	262 / 302	330 / 382
L03	[mm]	Stro	oke
L04	[mm]	28	32
L05	[mm]	55	64
H01	[mm]	64	76.5
H02	[mm]	49.3	58
H03	[mm]	22	30
H04	[mm]	2	0
H05	[mm]	28.3	35.5
H06	[mm]	2)	45
H07	[mm]	44.3	53
B01	[mm]	69	82
B02	[mm]	48.2	63.2
B03	[mm]	30.4	42
B04	[mm]	4	0
B05	[mm]	49.8	63.6
B06	[mm]	67	80
Q01	[mm]	42	55
Q02	[mm]	35	43
D01xL	[mm]	10H7 x 1028	14H7 x 1334
D02xL	[mm]	40 x 3	47 x 3
D03xL	[mm]	M4 x 12	M5 x 8



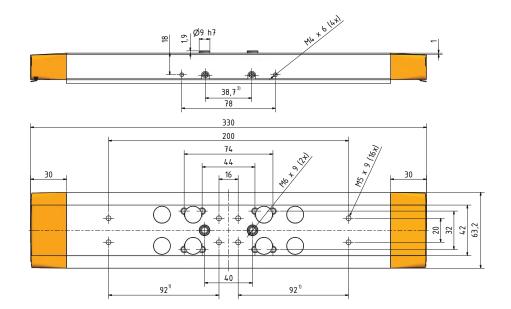
¹⁾ Idler axis with end plate on both sides (without drive/ deflection station) for double axis applications with center distances below 200 mm. Example order code for idler axis: **HLR**080A1000INNA (in bold: to be selected)


²⁾ HLR070 has no separate limit switch slot. The limit switches can be mounted in the T-slot.

HLR070 carriage A (short)

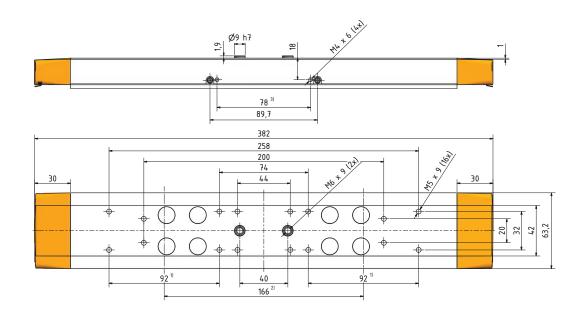
Dimensions in [mm]

HLR070 carriage B (long)


Dimensions in [mm]

¹⁾ Distance for mounting a cross beam (HLR070) directly on the carriage by means of toe clamps

²⁾ Axle distance of double axis sutiable for the cross beam for the connection of a Z-axis.


³⁾ Lubrication nipples on both sides of the carriage plate

HLR080 carriage A (short)

Dimensions in [mm]

HLR080 carriage B (long)

Dimensions in [mm]

¹⁾ Distance for mounting a cross axis (HLR080) direct to the carriage by toe clamps

²⁾ Axle distance of double axis sutiable for the cross beam for the connection of a Z-axis.
³⁾ Lubrication nipples on both sides of the carriage plate

OSP-E..BHD - Belt Actuator with Integrated Ball Bearing

Standard Versions:

- Belt Actuator with integrated Ball Bearing Guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the actuator itself

Options:

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Drive shaft with
 - clamp shaft and plain shaft
 - hollow shaft with keyway
- Special drive shaft versions on request

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator.

Check if profile mountings are needed using the maximum allowable unsupported length graph.

At least one end cap must be secured to prevent axial sliding when profile mountings are used.

Characteristics	Description
Series	OSP-EBHD
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	In any position
Encapsulation class	IP 54
Material	
Slotted profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide	Ball bearing guide
Guide rail	Hardened steel rail with high precision, accuracy class N
Guide carrier	Steel carrier with integrated wiper system, grease nipples, preloaded 0.02 x C, accuracy class H
Steel band	Hardened, corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

	•						
Series		eight (mass)[k			rtia [x 10 ⁻⁶ kg		
	At stroke 0 m	Add per metre stroke	Moving mass	At stroke 0 m	Add per metre stroke	per kg mass	
OSP-E20BHD	2.8	4	0.8	280	41	413	
OSP-E25BHD	4.3	4.5	1.5	1229	227	821	
OSP-E32BHD	8.8	7.8	2.6	3945	496	1459	
OSP-E50BHD	26	17	7.8	25678	1738	3103	
OSP-E20BHD*	4.3	4	1.5	540	41	413	
OSP-E25BHD*	6.7	4.5	2.8	2353	227	821	
OSP-E32BHD*	13.5	7.8	5.2	7733	496	1459	
OSP-E50BHD*	40	17	15	49180	1738	3103	

^{*} Version: Tandem and Bi-parting (Option)

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation.

Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the machine directive.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection:

- Determination of the lever arm length I_x, I_y and I_z from m_e to the centre axis of the actuator.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F = m_a \cdot g$
- Calculation of the static and dynamic force F_A which must be transmitted by the belt.

$$F_{A(horizontal)} = F_a + F_0$$

$$= m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$$

$$\begin{array}{l} \boldsymbol{F}_{A(\text{vertical})} = \boldsymbol{F}_{g} + \boldsymbol{F}_{a} + \boldsymbol{F}_{0} \\ = \boldsymbol{m}_{g} \cdot \boldsymbol{g} + \boldsymbol{m}_{g} \cdot \boldsymbol{a} + \boldsymbol{M}_{0} \cdot 2\pi \ / \ \boldsymbol{U}_{ZR} \end{array}$$

- 4. Calculation of all static and dynamic bending moments M_x , M_y and M_z which occur in the application $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

I = distance of a mass in thex-, y- and z-direction from theguide [m]

m_a = external moved mass [kg]

 $m_{IA} = moved mass of actuator [kg]$

 $m_g = total moved mass$ $<math>(m_e + m_{LA}) [kg]$

 $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]

 F_{Λ} = action force [N]

 M_0 = no-load torque [Nm]

 U_{ZR} = circumference of the pulley

(linear movement per revolution) [m]

 $g = gravity [m/s^2]$

a_{max.} = maximum acceleration [m/s²]

Performance Overview

Characteristics	•	Unit	Descriptio	n		
Series			OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD
Max. speed		[m/s]	31)	5 ¹⁾	5 ¹⁾	5 ¹⁾
Linear motion pof drive shaft	[mm]	125	180	240	350	
Max. rpm on d	[min ⁻¹]	2000	1700	1250	860	
Max. effective	< 1 m/s:	[N]	550	1070	1870	3120
Action force	1-3 m/s:	[N]	450	890	1560	2660
F _A at speed	> 3 m/s:	[N]	_	550	1030	1940
No-load torque	•	[Nm]	0.6	1.2	2.2	3.2
Max. accelerat	[m/s ²]	50	50	50	50	
Repeatability	[mm/m]	±0.05	±0.05	±0.05	±0.05	
Max. standard	stroke length	[mm]	5760 ²⁾	5700 ²⁾	5600 ²⁾	5500 ²⁾

¹⁾ up to 10 m/s on request

Maximum Permissible Torque on Drive Shaft Speed / Stroke

OSP-E20BHD			0	OSP-E25BHD			OSP-E32BHD			OSP-E50BHD					
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]												
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3 (25)	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5 (21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

Maximum Permissible Loads

Series	Max. app	olied load Fz[N]	Max. mom	ents [Nm] My	Mz
OSP-E20BHD	1600	1600	21	150	150
OSP-E25BHD	2000	3000	50	500	500
OSP-E32BHD	5000	10000	120	1000	1400
OSP-E50BHD	12000	15000	180	1800	2500

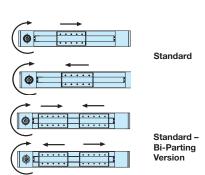
²⁾ longer strokes on request

Options and Accessories

OSP-E..BHD Belt actuator with integrated guide

STANDARD VERSIONS OSP-E..BHD

Standard carrier with integrated guide and magnets for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.


DRIVE SHAFT WITH CLAMP SHAFT

DRIVE SHAFT WITH PLAIN SHAFT

ACTUATING DIRECTION Important in parallel operations, e.g. with intermediate drive shaft

OPTIONS

TANDEM For higher moment support.

BI-PARTING VERSION For perfectly synchronised bi-parting movements.

DRIVE SHAFT WITH CLAMP SHAFT AND PLAIN SHAFT For connections with intermediate drive shaft

HOLLOW SHAFT WITH KEYWAY For close coupling of motors and external gears.

ACCESSORIES

MOTOR MOUNTINGS

grooves.

END CAP MOUNTING For mounting the actuators on the end cap.

PROFILE MOUNTING For supporting long actuators or mounting the actuators on dovetail

MAGNETIC SWITCHES TYPE RS AND ES

For contactless position sensing of end stop and intermediate carrier positions.

MULTI-AXIS SYSTEMS For modular assembly of actuators up to multi-axis systems.

OSP-E..B - Belt Actuator with Internal Plain Bearing Guide

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Position of drive shafts

Options:

- Tandem version
- Bi-parting version for synchronized movements
- Drive shaft with double plain shaft

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. See if Profile Mountings are needed using the maximum allowable unsupported length graph.

At least one end cap must be secured to prevent axial sliding when profile mounting is used.

When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description
Series	OSP-EB
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	See table
Encapsulation class	IP 54
Material Slotted Profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	at stroke 0 m	Weight (mas ad per meter stroke	ss) [kg] moving mass	Inertia [x at stroke 0 m	10 ⁻⁶ kgm ²] ad per meter stroke
OSP-E25B	0.9	1.6	0.2	25	6.6
OSP-E32B	1.9	3.2	0.4	43	10
OSP-E50B	5.2	6.2	1.0	312	45
OSP-E25B*	1.2	1.6	0.5	48	6.6
OSP-E32B*	2.3	3.2	0.8	83	10
OSP-E50B*	6.3	6.2	2.1	585	45

^{*} Version: Tandem and Bi-parting (Option)

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3 000 km travel of distance.

Additional greasing is easily done by using nipples in the slotted profile. Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the machine directive.

Sizing Performance **Overview Maximum Loadings**

Sizing of Actuator

The following steps are recommended for selection:

- 1. Required acceleration,
- 2. Required torque is shown on page 332
- 3. Check that maximum values in the table 3 are not exceeded
- 4. Drive shaft by using table T2. (Pay attention to note under table) If value is lower than required, overview the moving profile or select if possible a bigger unit.
- 5. Before sizing and specifying the motor, the average torque must be calculated using the cycle time of the application.
- 6. Check that the maximum allowable unsupported length is not exceeded.

Performance Overview

Characteristics	3	Unit	Description		
Size			OSP-E25B	OSP-E32B	OSP-E50B
Max. speed		[m/s]	2	3	5
Linear motion drive shaft	per revolution,	[mm]	60	60	100
Max. rpm drive	shaft	[min ⁻¹]	2 000	3 000	3 000
Max. effective	< 1 m/s:	[N]	50	150	425
action force	1- 2 m/s:	[N]	50	120	375
F _A at speed	> 2 m/s:	[N]	_	100	300
No-load torque)	[Nm]	0.4	0.5	0.6
Max. accelerat	ion/deceleration	[m/s ²]	10	10	10
Repeatability		[mm/m]	±0.05	±0.05	±0.05
Max. stroke lei	ngth OSP-EB	[mm]	3000	5000	5000
Max. stroke lei	ngth OSP-EB*	[mm]	2 x 1500	2 x 2500	2 x 2500

^{*} Bi-parting version

Maximum Permissible Torque on Drive Shaft Speed / Stroke (T2

OSP-E25B				OSP-E32B				OSP-E50B			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1 2	0.9 0.9	1 2 3	0.9 0.9 0.9	1 2 3	2.3 2.0 1.8	1 2 3 4 5	2.3 2.3 2.3 2.3 1.8	1 2 3 4 5	10.0 9.5 9.0 8.0 7.5	1 2 3 4 5	10.0 10.0 9.0 7.0 6.0

Important:

The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E32B stroke 2 m, required speed 3 m/s;

From table T2: speed 3 m/s gives 1.8 Nm and stroke 2 m gives 2.3 Nm.

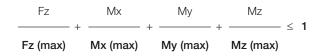

Max. torque for this application is 1.8 Nm.

Loads, Forces and Moments

Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.


 $M = F \cdot I [Nm]$ $M_x = M_{x \text{ static}} + M_{x \text{ dynamic}}$ $M_y^x = M_y^x \text{ static} + M_y^x \text{ dynamic}$ $M_z = M_z^x \text{ static} + M_z^x \text{ dynamic}$

The distance I (lx, ly, lz) for calculation of the bending moments relates to the centre axis of the actuator.

Maximum Permissible Loads

Size	Max. applied load [N] Fz	Max. mome Mx	ents [Nm] My	Mz
OSP-E25B	500	2	12	8
OSP-E32B	1200	8	25	16
OSP-E50B	3000	16	80	32
OSP-EB Bi-partional	The maximum load F must be equally distributed among the two carriers			

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Options and Accessories

OSP-E..B Belt actuator with internal plain bearing guide

STANDARD VERSIONS OSP-E..B

Carrier with internal guidance and magnet packet for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.

DRIVE SHAFT VERSIONS

- Plain shaft or
- double plain shaft (Option)
 e.g. to drive two actuators in parallel.

OPTIONS

TANDEM For higher moment support.

BI-PARTING For perfectly synchronised bi-parting movements.

ACCESSORIES

MOTOR MOUNTING

END CAP MOUNTING
For end-mounting of the actuator.

PROFILE MOUNTING For supporting long actuators or mounting the actuators on the

mounting the actuator on the dovetail grooves.

CLEVIS MOUNTING

Carrier with tolerance and parallelism compensation to drive external linear guides.

INVERSION MOUNTING

The inversion mounting, mounted on the carrier, transfers the driving force to the opposite side, e.g. for dirty environments.

MAGNETIC SWITCHES SERIES RST AND EST

For contactless position sensing of end stop and intermediate carrier positions.

OSP-E..SB - Ball Screw Actuator with Internal Plain Bearing Guide

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Pitches of Ball Screw
 Type OSP-E25: 5 mm
 Type OSP-E32: 5, 10 mm
 Type OSP-E50: 5, 10, 25 mm

Options:

Tandem version

Installation Instructions

Use the threaded holes in the end cap for mounting the actuator. See if Profile Mountings are needed using the maximum allowable unsupported length graph.

At least one end cap must be secured to prevent axial sliding when profile mounting is used.

When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the actuator should be fitted with its sealing band facing downwards. The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description
Series	OSP-ESB
Ambient temperature range	-20 °C to +80 °C
Installation	In any position
Mounting	See drawing
Encapsulation class	IP 54
Material	
Slotted Profile	Extruded anodized aluminium
Ball screw	Hardened steel
Ball screw nut	Hardened steel
Guide bearings	Low friction plastic
Sealing band	Hardened corrosion resistant steel
Screws, nuts	Zinc plated steel
Mountings	Zinc plated steel and aluminium

Weight (mass) and Inertia

Series	Weight (mass) [kg] at stroke 0 m ad per meter stroke moving mass			Inertia [x at stroke 0 m	10 ⁻⁶ kgm ²] ad per meter stroke
OSP-E25SB	0.8	2.3	0.2	2.2	11
OSP-E32SB	2.0	4.4	0.4	8.4	32
OSP-E50SB	5.2	9.4	1.2	84.0	225

Maintenance

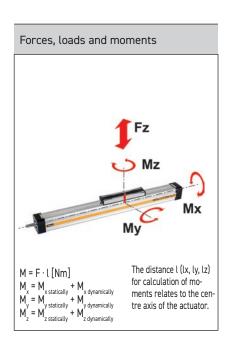
All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3 000 km travel of distance.

Please refer to the operating instructions supplied with the actuator

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the machine directive.

Sizing Performance Overview Maximum Loadings


Sizing of Actuator

The following steps are recommended for selection:

- 1. Recommended maximum acceleration is shown in graphs
- 2. Required torque is shown in graphs
- 3. Check that maximum values in the adjacent charts are not exceeded.
- When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 5. Check that the maximum allowable unsupported length is not exceeded.

Performance Overview

Characteristics	Unit	Description					
Series		OSP-E25SB	OSP-E3	2SB	OSP-E	50SB	
Pitch	[mm]	5	5	10	5	10	25
Max. speed	[m/s]	0.25	0.25	0.5	0.25	0.5	1.25
Linear motion per revolution drive shaft	[mm]	5	5	10	5	10	25
Max. rpm, drive shaft	[min ^{-1]}	3 000	3 000	3 000 3 000			
Max. effective action force F _A Corresponding torque on drive shaft	[N] [Nm]	250 0.35	600 0.75	1.3	1 500 1.7	3.1	7.3
No-load torque	[Nm]	0.2	0.2	0.3	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	0.6	1.5	2.8	4.2	7.5	20
Repeatability	[mm/m]	±0.05	±0.05 ±0.05				
Max. Standard stroke length	[mm]	1100	2000 3200				

Maximum permissible Loads						
Series	Max. applied load [N] Fz	Max. momer Mx	nts [Nm] My	Mz		
OSP-E25SB	500	2	12	8		
OSP-E32SB	1200	8	25	16		
OSP-E50SB	3000	16	80	32		

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here. The maximum permissible loads must not be exceeded.

Equation fo	r combined load	s		
	Fz	Mx	Му	Mz
	+		++	≤ 1
	Fz (max)	Mx (max)	My (max)	Mz (max)

The total of loads must not exceed >1 under any circumstances.

OSP-E..ST - Trapezoidal Screw Actuator with Internal Plain Bearing Guide

Standard Versions:

- Standard carrier with internal plain bearing guide
- Dovetail profile for mounting of accessories and the actuator itself
- Pitch of Trapezoidal Spindle: Type OSP-E25ST: 4 mm Type OSP-E32ST: 4 mm

Type OSP-E50ST: 6 mm

Installation Instructions

Use the threaded holes in the free end cap and a profile mounting close to the motor end for mounting the actuator. See if profile mountings are needed using the maximum permissible unsupported length graph.

At least one end cap must be secured to prevent axial sliding when Profile Mounting is used.

When the actuator is moving an externally guided load, the compensation must be used.

The actuators can be fitted with the standard carrier mounting facing in any direction.

To prevent contamination such as fluid ingress, the drive should be fitted with its sealing band facing downwards.

The inversion mounting can be fitted to transfer the driving force to the opposite side.

Characteristics	Description	
Series	OSP-EST	
Mounting	See drawings	
Ambient temperature range	-20 °C to +70 °C	
Installation	In any position	
Material		
Slotted Profile	Extruded anodized aluminium	
Trapazoidal screw	Cold rolled steel	
Drive nut	Thermoplastic polyester	
Guide bearings	Low friction plastic	
Sealing band	Hardened corrosion resistant steel	
Screws, nuts	Zinc plated steel	
Mountings	Zinc plated steel and aluminium	

Weight (mass) and Inertia

Series	at stroke 0 m	Weight (mass) [kg] oke 0 m ad per meter stroke moving mass			10 ⁻⁶ kgm²] ad per meter stroke
OSP-E25ST	0.9	2.8	0.2	6	30
OSP-E32ST	2.1	5.0	0.5	21.7	81
OSP-E50ST	5.1	10.6	1.3	152	400

Maintenance

All moving parts are long-term lubricated for a normal operational environment. Parker Origa recommends a check and lubrication of the actuator, and if necessary a change of the belt and wear parts, after an operation time of 12 months of operation or 3000 km travel of distance.

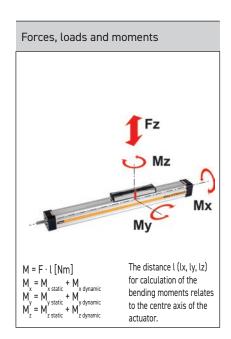
Please refer to the operating instructions supplied with the drive

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the machine directive.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator


The following steps are recommended for selection:

- 1. Check that maximum values in the table T3 are not exceeded.
- 2. Check the maximum values in graph are not exceeded.
- 3. When sizing and specifying the motor, the RMS-average torque must be calculated using the cycle time of the application.
- 4. Check that the maximum allowable unsupported length is not exceeded

Performance Overview

Characteristics	Unit	Description		
Size		OSP-E25ST	OSP-E32ST	OSP-E50ST
Pitch	[mm]	4	4	6
Max. speed	[m/s]	0.1	0.1	0.15
Linear motion per revolution drive shaft	[mm]	4	4	6
Max. rpm, drive shaft	[min-1]	1500	1500	1500
Max. effective action force FA Corresponding torque on drive shaft	[N] [Nm]	600 1.35	1300 3.2	2 500 8.8
No-load torque	[Nm]	0.3	0.4	0.5
Max. allowable torque on drive shaft	[Nm]	1.55	4.0	9.4
Self-locking force FL1)	[N]	600	1300	2500
Repeatability	[mm/m]	±0.5	±0.5	±0.5
Max. Standard stroke length	[mm]	1100	2000	2500*

- 1) Related to screw types Tr 16x4, Tr 20x4, TR 30x6
- * For strokes longer than 2000 mm in horizontal apllications, please contact our customer support.

Combined Loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here. The maximum permissible loads must not be exceeded.

Maximum Peri	missible Loads			T3
Size	Max. applied load [N] Fz	Max. momer Mx	nts [Nm] My	Mz
OSP-E25ST	500	2	24	7
OSP-E32ST	1000	6	65	12
OSP-E50ST	1500	13	155	26

Equation for Combined Loads							
	Fz	Mx	Му	Mz			
	+		++	≤ 1			
	Fz (max)	Mx (max)	My (max)	Mz (max)			

The total of the loads must not exceed >1 under any circumstances.

OSP-E..BV - Vertical Belt Actuator with Integrated Ball Bearing Guide

Standard Versions:

- Vertical belt actuator with integrated ball bearing guide
- Drive shaft with clamp shaft or plain shaft
- Choice of motor mounting side

Options:

- Tandem version for higher moments
- Drive shaft with
 - clamp shaft and plain shaft or double plain shaft
 - hollow shaft with keyway
- Special drive shaft versions on request

Installation Instructions

Make sure that the OSP-E..BV is always operated by motor with holding brake on the actuator side. For the mounting of the external mass to be moved there are threaded holes in the end caps. Before mounting, check the correct centre of gravity distance from the table.

Mount the external mass on the belt fixed end, so that the belt tension can be checked and adjusted at the belt tensioning end without dismantling.

Characteristics	Description
Series	OSP-EBV
Mounting	See drawings
Ambient temperature range	-30 °C to +80 °C
Installation	Vertical
Encapsulation class	IP 20
Material	
Profile	Extruded anodized aluminium
Belt	Steel-corded polyurethane
Pulley	Aluminium
Guide	Ball bearing guide
Guide rail	Hardened steel rail with high precision, accuracy class N
Guide carrier	Steel carrier with integrated wiper system, grease nipples,
preloaded 0.08 x C, accuracy class N	
Screws, nuts	Zinc plated steel

Weight (mass) and Inertia

Series			Moving mass [kg]		Inertia [x 10 ⁻⁶ kgm ²]		
	At stroke 0 m	Actuator head	At stroke 0 m	Add per metre stroke	At Stroke 0 m	Add per metre stroke	Add per kg mass
OSP-E20BV	3.4	1.9	1.6	4.0	486	1144	289
OSP-E25BV	7.7	5.3	2.4	4.4	1695	2668	617
OSP-E20BV*	5.3	2 x 1.9	1.6	4.0	533	1144	289
OSP-E25BV*	13	2 x 5.3	2.4	4.4	1915	2668	617

^{*} Version: Tandem (Option)

Maintenance

Depending on operating conditions, inspection of the actuator is recommended after 12 months or 3000 km operation.

Please refer to the operating instructions supplied with the actuator.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the actuator as a machine into service, the user must ensure the adherence to the machine directive.

Sizing Performance Overview Maximum Loadings

Sizing of Actuator

The following steps are recommended for selection:

- Determination of the lever arm length I_x, I_y and I_z from m_e to the centre axis of the actuator.
- Calculation of the static and dynamic force F_A which must be transmitted by the belt.
 F_A = F_A + F_A

 $\begin{aligned} F_{_{A}} &= F_{_{g}} + F_{_{a}} + F_{_{0}} \\ &= m_{_{g}} \cdot g + m_{_{g}} \cdot a + M_{_{0}} \cdot 2\pi / U_{_{ZR}} \end{aligned}$

- 3. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 4. Selection of maximum permissible loads via Table T3.
- Calculation and checking of the combined load, which must not be higher than 1.
- 6. Checking of the maximum moment that occurs at the drive shaft in Table T2.
- Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

I = distance of a mass in thex-, y- and z-direction from theguide [m]

m_a = external moved mass [kg]

 $m_{IA} = moved mass of actuator [kg]$

 $m_g = \text{total moved mass}$ $(m_e + m_{IA})$ [kg]

 F_{Δ} = action force [N]

 M_0 = no-load torque [Nm]

U_{ZR} = circumference of the pulley (linear movement per revolution) [m]

 $g = gravity [m/s^2]$

a = maximum acceleration [m/s²]

Performance Overview

Characteristics		Unit	Description	
Series			OSP-E20BV	OSP-E25BV
Max. Speed		[m/s]	3.0	5.0
Linear motion per revol of drive shaft	ution	[mm/U]	108	160
Max. rpm. drive shaft		[min ⁻¹]	1700	1875
Max. effective	1m/s	[N]	650	1430
action force F _A	1-2m/s	[N]	450	1200
atspeed	>3-5m/s	[N]	-	1050
No-load torque ²⁾		[Nm]	0.6	1.2
Max. acceleration/dece	leration	[m/s ²]	20	20
Repeatability		+/- [mm/m]	0.05	0.05
Max. standard stroke le	ngth 1)	[mm]	1000	1500
Max. recomended pern	nissible mass 3)	[kg]	10	20

¹⁾ Longer strokes on request

Maximum Permissible Torque on Drive Shaft Speed / Stroke

C	SP-E-20)BV		C	SP-E-2	5BV	
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1	19	1	17	1	36	1	36
2	17	2	11	2	30	2	36
3	16			3	30		
				4	28		
				5	27		

Important

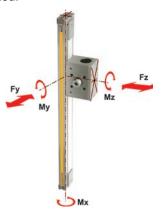
The maximum permissible torque on the drive shaft is the lowest value of the speed or stroke-dependent torque value.

Example above:

OSP-E25BV required speed v = 3 m/s and stroke = 1 m.

Accordingly Table T2 shows permissible moments of 30 Nm for the speed and 36 Nm for the stroke. Therefore the maximum moment at the drive shaft is determined by the speed and must not exceed 30 Nm.

²⁾ As a result of static friction force


³⁾ vertical

Loads, Forces and Moments

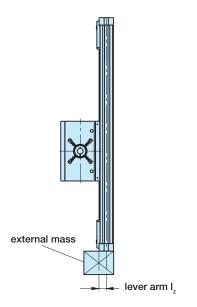
Combined loads

If the actuator is subjected to several forces, loads and moments at the same time, the maximum load is calculated with the equation shown here.

The maximum permissible loads must not be exceeded.

$$\begin{aligned} & M = F \cdot I \text{ [Nm]} \\ & M_x = M_{x \text{ static}} + M_{x \text{ dynamic}} \\ & M_y = M_{y \text{ static}} + M_{y \text{ dynamic}} \\ & M_z = M_{z \text{ static}} + M_{z \text{ dynamic}} \end{aligned}$$

The distance I (Ix, Iy, Iz) for calculation of the bending moments relates to the centre axis of the


Maximum Permissible Loads

Size	Max. applied	l load [N]	Max. mome	ents [Nm]	
	Fy [N]	Fz [N]	Mx	My	Mz
OSP-E20BV	1600	1600	20	100	100
OSP-E25BV	2000	3000	50	200	200

Equation of Combined Loads

The total of the loads must not exceed >1 under any circumstances.

Distance of Centre of Gravity of External Mass from Mid-Point of Actuator

	os	SP-E20BV	os	SP-E25BV
Mass [kg]	Lever arm I _z [mm]	Max. permissible acceleration/ deceleration [m/s²]	Lever arm I _z [mm]	Max. permissible acceleration/ deceleration [m/s²]
> 3 to 5	0	20	50	20
>5 to 10	0	20	40	20
>10 to 15	-	-	35	20
>15 to 20	-	-	30	15

Options and Accessories

OSP-E..BV, Vertical belt actuator with integrated ball bearing guide

STANDARD VERSION OSP-E..BV

Standard actuator head with clamp shaft or plain shaft and integrated ball bearing guide with two carriers.

Choice of side on which gearbox or motor is to be mounted.

DRIVE SHAFT
"CLAMP SHAFT AND PLAIN
SHAFT" OR "DOUBLE PLAIN
SHAFT"

e.g. for parallel operation of two Z-axes with an intermediate drive shaft

ACCESSORIES

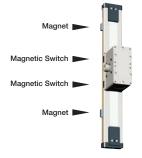
MOTOR MOUNTINGS

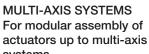
For connection of gearbox or motor direct to drive shaft with clamp shaft, or with a motor coupling to drive shaft with plain shaft.

Drive Shaft with Clamp Shaft

Drive Shaft with Double Plain Shaft

MAGNETIC SWITCHES SET
Magnetic switches with
connector, mounting rail and
magnets for contactless sensing
of the end positions. Cable
(suitable for cable chain) can
be ordered separately in 5 m,
10 m or 15 m length.


OPTIONS


TANDEM Additional actuator head and two additional carriers for higher bending moments.

HOLLOW SHAFT WITH KEYWAY For direct connection of gearbox or motor with keyway.

HMR - Electromechanical Linear Actuator

Profile designs

- Basic profile for assembling directly to the machine base
- Reinforced profile for self-supporting assembly

Mounting systems

• Integrated T-slots for attaching from below and from the side

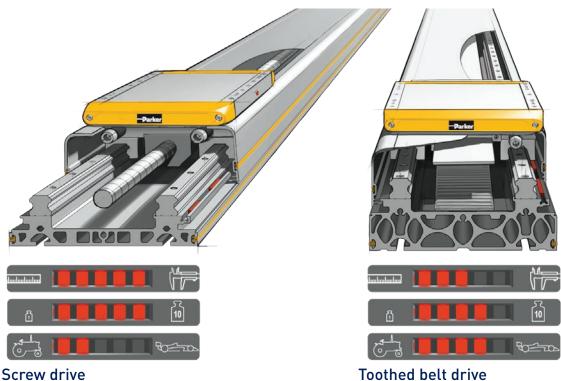
Protection classes

• Without cover: Standard • With cover: IP54

Guide system

• Recirculating ball bearing guide

Lubrication


• Central lubrication via externally accessible lubricating nippels

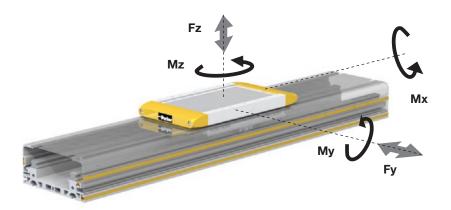
Position sensing

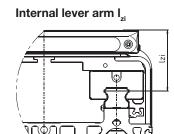
• Integrated, adjustable position switch for end positions and homing

Impact protection

• Integrated shock absorbers for both end positions

Screw drive


The solution for precise path and position control for heavy loads


Sizes 85, 110, 150, 180, 240 mm

Load requirements for guides and installation size.

The occurring loads, forces and bending moments depend on the application. The mass of the construction attached to the carriage has a center of gravity. This mass creates static forces ($F = m \cdot g$) and bending moments ($M = m \cdot g \cdot l$). Additional dynamic moments ($M = m \cdot a \cdot l$) arise in dependence of the acceleration during travel. Care should be taken when selecting suitable guides that the permissible sum of loads does not exceed 1.

Loads, forces and bending moments

Dimensions - Internal lever arm I,

		21
Product size		l _{zi}
HMRx085	[mm]	33.0
HMRx110	[mm]	39.5
HMRx150	[mm]	50.0
HMRx180	[mm]	57.5
HMRx240	[mm]	68.0

Combined loads

The maximum permissible load for linear drives subject to simultaneous multiple

loads, forces and bending moments are calculated using the formula below.

	Fy	Fz	Mx	Му	Mz	
L=	+		+ +	+		≤1
	Fy _(max)	Fz _(max)	$Mx_{(max)}$	$My_{(max)}$	$Mz_{(max)}$	

Maximum permissible loads must not be exceeded.

The sum of all loads must under no circumstance be > 1.

Maximum permissible loads based on a performance of 2,540 km

Product S	ize	HMRx08	HMRx11	HMRx15	HMRx18	HMRx24	HMRx08	HMRx11	HMRx15	HMRx18	HMRx24
Carriage	Carriage Standard							Tandem			
Max. permissible loa						ad					
F _{z2540} F _{y2540}	[N]	1,800	4,450	8,800	16,200	26,600	2,700	6,700	13,200	24,300	39,900
				Max	. permissib	ole bending	moment				
M _{x2540}	[Nm]	45	155	430	940	2,150	68	235	645	1,410	3,225
M _{y2540} M _{z2540}	[Nm]	80	200	560	1,230	2,430	120	300	840	1,845	3,645

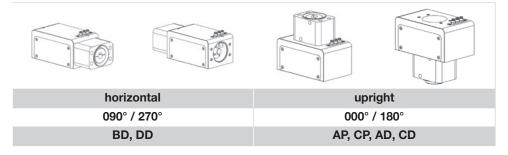
Maximum permissible loads based on a performance of 8,000 km $\,$

Product S	Size	HMRx08 HMRx11 HMRx15 HMRx18 HMRx24				HMRx24	HMRx08	HMRx11	HMRx15	HMRx18	HMRx24
Carriage Standard								Tandem			
		Max. permissible load									
F _{z8000} F _{y8000}	[N]	1,250	3,000	6,000	11,000	18,200	1,875	4,500	9,000	16,500	27,300
				Max. p	ermissible	bending m	oment				
M _{x8000}	[Nm]	30	105	290	640	1,460	45	160	435	960	2,190
M _{y8000} M _{z8000}	[Nm]	55	135	380	840	1,660	80	205	570	1,260	2,490

Series HMRS / Ball Screw / Drive Data

Series HMRS / Ball Screw / Drive Data / Sizes 85, 110, 150, 180, 240 mm

Technical Data HMRS


Product Size	Product Size		HMRS08		HMI	HMRS11		HMRS15		HMRS18		HMRS24	
Type of Screw			12 x 5	12 x 12	16 x 5	16 x 16	20 x 5	20 x 20	25 x 10	25 x 25	32 x 10	32 x 32	
Pitch	р	[mm]	5	12	5	16	5	20	10	25	10	32	
Max. speed	V _{max.}	[m/s]	0.25	0.60	0.25	0.80	0.25	1.00	0.50	1.25	0.50	1.60	
Max. acceleration	a _{max.}	[m/s ^{2]}	1	10	1	10		10	1	0	1	0	
Repeatability		[µm]	±	20	±	20	±	20	± 2	20	±	20	
Max. stroke		[mm]	1,5	200	1,	500	2,	500	3,4	.00	4,0	000	

Max. stroke		[mm]	1,	200	1,	500	2,	500	3,4	100	4,	000
				Th	rust forc	e and tor	que					
Max. thrust force	F _{Amax}	[N]	820	820	2,200	2,200	2,600	2,600	4,800	4,800	5,500	5,500
Max. tritast force	⊢ _{A2540}	[N]	820	650	1,550	1,150	1,800	2,160	3,300	3,960	3,500	4,880
Max. torque at	M _{Amax}	[Nm]	0.7	1.7	1.9	6.1	2.2	9.0	8.3	20.8	9.5	30.4
drive shaft	M _{A2540}	[Nm]	0.7	1.3	1.3	3.1	1.6	7.5	5.7	17.1	6.1	27.0
No load torque	M _o	[Nm]	0.2	0.2	0.3	0.4	0.7	0.9	0.9	1.0	1.0	1.1
Stroke depender	t speed											
	200	[mm]	250	600	250	800	250	1,000	500	1,250	500	1,600
	400	[mm]	250	600	250	800	250	1,000	500	1,250	500	1,600
	600	[mm]	152	366	197	631	250	1,000	500	1,250	500	1,600
	800	[mm]	102	245	132	424	169	678	382	956	423	1,354
	1000	[mm]	73	176	95	304	122	486	277	694	312	997
Ske	1200	[mm]	55	132	71	228	91	366	211	526	239	765
strc	1400	[mm]	-	-	56	178	71	285	165	413	189	605
ordei	1600	[mm]	-	-	45	143	57	228	133	333	153	491
atc	1800	[mm]	-	-	-	-	47	187	109	274	127	406
Max. permissible speed at order stroke	2000	[mm]	-	-	-	-	39	156	92	229	107	342
le sk	2200	[mm]	-	-	-	-	33	132	78	195	91	291
dissi	2400	[mm]	-	-	-	-	28	113	67	167	79	251
ermi	2600	[mm]	-	-	-	-	-	-	58	145	68	219
Х. С	2800	[mm]	-	-	-	-	-	-	51	128	60	193
M	3000	[mm]	-	-	-	-	-	-	45	113	53	171
	3200	[mm]	-	-	-	-	-	-	40	100	48	152
	3400	[mm]	-	-	-	-	-	-	-	-	43	137
	3600	[mm]	-	-	-	-	-	-	-	-	39	123
	3800	[mm]	-	-	-	-	-	-	-	-	35	112
	4000	[mm]	-	_	-	-	_	-	-	-	32	102

Series HMRB / Belt / Drive Data

Description Motor mounting position

Type and orientation of the belt is given by the motor mounting position.

Technical data HMRB

Production size			НМЕ	RB08	НМЕ	RB11	HMRB15			
Motor mounting position	1		090° / 270°	000° / 180°	090° / 270°	000° / 180°	090° / 270°	000° / 180°		
Lead constant	S _{lin.}	[mm]	66	66	90	90	100	125		
Max. speed	V _{max.}	[m/s]		4	2			5		
Max. acceleration	a _{max.}	[m/s ²]		3	0		5	0		
Repeatability		[µm]			±	50				
Max. order stroke		[mm]	3,0	000	4,0	000	6,0	000		
Thrust force and torque										
Max. thrust force	F _{A max.}	[N]	295	295 295 630 630 1,050 630						
Max. torque on drive shaft	$M_{\text{A max.}}$	[Nm]	3.1	3.1	9.0	9.0	17.0	13.0		
No load torque	M_{o}	[Nm]	1.0	1.0	1.2	1.2	1.2	1.2		

Technical data HMRB

Production size			HMRB18 HMRB24						
Motor mounting position	1		090° / 270°	000° / 180°	090° / 270°	000° / 180°			
Lead constant	S _{lin.}	[mm]	130 150 160 2						
Max. speed	V _{max.}	[m/s]		Į	5				
Max. acceleration	a _{max.}	[m/s ²]		5	0				
Repeatability		[µm]		±	50				
Max. order stroke		[mm]		6,0	000				
Thrust force and torque									
Max. thrust force	F _{A max.}	N	1,300 1,000 4,000 3,750						
Max. torque on drive shaft	$M_{\text{A max.}}$	Nm	27 24 101 134						
No load torque	M_{0}	Nm	2.0	2.0	4.0	4.0			

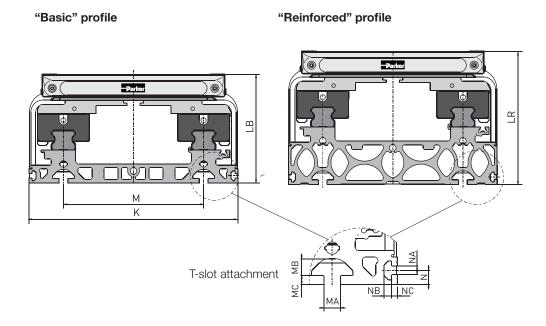
Series HMRB / Belt / Thrust Force

The permissible thrust force from the table is depending on speed level and order stroke length. The minimum thrust force value must not be exceeded in the application.

Information: Limiting the torque from the motor may avoid exceeding permitted thrust force.

HMRB thrust force

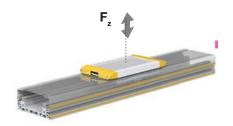
Product size			HMRB08		HMRB11		HMRB15		HMRB18		HMRB24	
Motor mounting position			090° / 270°	000° / 180°	090° / 270°	000° / 180°	090° / 270°	000° / 180°	090° / 270°	000°/ 180°	090° / 270°	000° / 180°
Thrust force F _A corresponding to speed v	F _{A(v<1 m/s)}	[N]	295	295	630	630	1,050	630	1,300	1,000	4,000	3,750
	F _{A(v<2 m/s)}	[N]	295	295	550	550	990	630	1,300	1,000	4,000	3,380
	F _{A(v<3 m/s)}	[N]	-	-	-	-	930	630	1,300	1,000	3,650	3,140
	F _{A(v<4 m/s)}	[N]	-	-	-	-	890	630	1,300	1,000	3,370	2,950
	F _{A(v<5 m/s)}	[N]	-	-	-	-	840	630	1,300	1,000	3,200	2,800
	F _{A(OS<1000 mm)}	[N]	250	250	630	630	1,050	630	1,300	1,000	4,000	3,750
	F _{A(OS<2000 mm)}	[N]	140	140	550	550	820	490	1,000	775	4,000	3,360
	F _{A(OS<3000 mm)}	[N]	100	100	385	385	570	340	710	550	3,370	2,440
	F _{A(OS<4000 mm)}	[N]	-	-	295	295	445	265	550	430	2,860	1,880
	F _{A(OS<5000 mm)}	[N]	-	-	-	-	365	215	450	350	2,350	1,540
	F _{A(OS<6000 mm)}	[N]	-	-	-	-	305	185	380	295	2,000	1,300

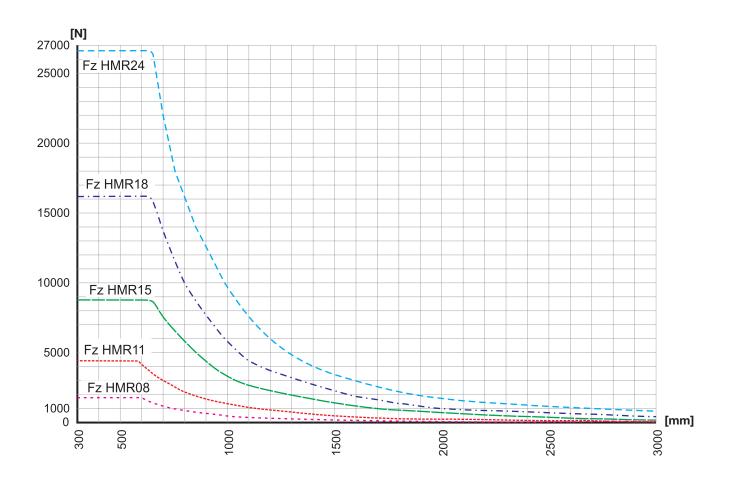

 $\label{eq:example: example: HMRB18 with motor mounting position 1 (090° front), speed v = 2 m/s (F_A = 1,300 N) and order stroke length OS = 2,500 mm (F_A = 710 N). The maximum permissible thrust force F_A = 710 N must not be exceeded.$

HMR Series Profile Versions Sizes 85, 110, 150, 180, 240 mm

Designs

- Basic
- -Reinforced

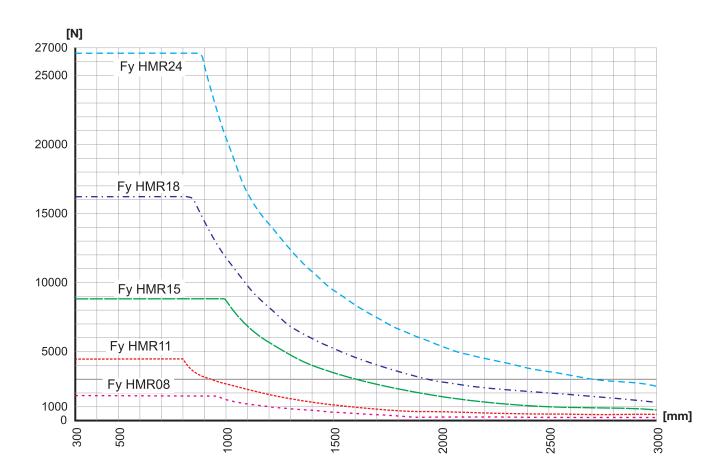

The HMR linear drive system can be equipped with a "basic" or "reinforced" profile as standard. The "basic" profile is suitable for fitting directly to a machine base that has a corresponding support surface. The "reinforced" profile, on the other hand, is the preferred choice for self-supporting systems or for use in conjunction with a base surface offering limited support. The permissible temperature range for both profile versions is -20°C ... +80°C.


Dimensions - Profil design HMR

Product Size	ze	K	LB	LR	М	MA	MB	MC	N	NA	NB	NC
HMRx085	[mm]	85.0	60.0	71.0	50.0	5.2	4.5	1.5	4.5	3.4	3.0	2.5
HMRx110	[mm]	110.0	69.5	89.5	70.0	5.2	4.5	1.8	4.5	3.4	3.0	2.5
HMRx150	[mm]	150.0	90.0	114.0	96.0	6.2	6.8	3.0	6.5	5.2	4.6	3.5
HMRx180	[mm]	180.0	111.5	134.5	116.0	8.0	7.8	4.5	8.5	5.2	4.5	3.5
HMRx240	[mm]	240.0	125.0	153.0	161.0	10.0	10.2	5.3	8.5	5.2	4.5	3.5

HMR Series Profile version "reinforced" Sizes 85, 110, 150, 180, 240 mm

Max. admissible loads [N] and supporting distances [mm] (self-supporting)


Example F_z HMR 11:

For a 2.800 N load the distance "D" between supporting elements is 720 mm. Mounting accessories see "Accessories / T-Slot Mounting"

HMR series Profile version "reinforced" Sizes 85, 110, 150, 180, 240 mm

Max. admissible loads [N] and supporting distances [mm] (self-supporting)

Example F_v HMR 11:

For a 3.160 N load the distance "D" between supporting elements is 900 mm. Mounting accessories see "Accessories / T-Slot Mounting" $\,$

Parker

At Parker, we're guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374

Parker's Motion & Control Technologies

Aerospace Key Markets

Aftermarket services Commercial transports Engines General & business aviation Helicopters Launch vehicles Military aircraft Missiles Power generation Regional transports Unmanned aerial vehicles

Key Products

Control systems & actuation products Engine systems & components Fluid conveyance systems & components Fluid metering, delivery & atomization devices Fuel systems & components Fuel tank inerting systems & components Thermal management Wheels & brakes

Climate Control Key Markets

Agriculture Air conditioning Construction Machinery Food & beverage Industrial machinery Life sciences Oil & gas Precision cooling Process Refrigeration

Key Products

Transportation

Accumulators Advanced actuators CO., controls Electronic controllers Filter driers Hand shut-off valves Heat exchangers Hose & fittings Pressure regulating valves Refrigerant distributors Safety relief valves Smart pumps Solenoid valves Thermostatic expansion valves

Electromechanical Key Markets

Aerospace Factory automation Life science & medical Machine tools Packaging machinery

Paper machinery Plastics machinery & converting Primary metals Semiconductor & electronics

Wire & cable

Key Products

AC/DC drives & systems Electric actuators, gantry robots Flectrohydrostatic actuation systems Electromechanical actuation systems Human machine interface Linear motors Stepper motors, servo motors, drives & controls Structural extrusions

Filtration Key Markets

Aerospace Food & beverage Industrial plant & equipment

Life sciences Marine Mobile equipment

Oil & gas Power generation & renewable energy Process

Transportation Water Purification

Key Products

Analytical gas generators Compressed air filters & dryers Engine air, coolant, fuel & oil filtration systems Fluid condition monitoring systems Hydraulic & Jubrication filters Hydrogen, nitrogen & zero air generators Instrumentation filters Membrane & fiber filters Microfiltration Sterile air filtration Water desalination & purification filters &

Fluid & Gas Handling

Key Markets

Aerial lift Agriculture Bulk chemical handling Construction machinery Food & beverage Fuel & gas deliven Industrial machinery Life sciences Marine Mining Mobile Oil & gas Renewable energy Transportation

Key Products

Check valves Connectors for low pressure fluid conveyance Deep sea umbilicals Diagnostic equipment Hose couplings Industrial hose Mooring systems & power cables PTFE hose & tubing Quick couplings Rubber & thermoplastic hose Tube fittings & adapters

Hvdraulics

Key Markets Δerial lift

Agriculture Alternative energy Construction machinery Forestry Industrial machinery Machine tools Marine Material handling Mining Oil & gas Power generation Refuse vehicles Renewable energy Truck hydraulics

Key Products

Accumulators Cartridge valves Electrohydraulic actuators Human machine interfaces Hybrid drives Hydraulic cylinders Hydraulic motors & pumps Hydraulic systems Hydraulic valves & controls Hydrostatic steering Integrated hydraulic circuits Power units Rotary actuators Sensors

Pneumatics

Key Markets

Aerospace Conveyor & material handling Factory automation Life science & medical Machine tools Packaging machinery Transportation & automotive

Key Products

Air preparation Brass fittings & valves Manifolds Pneumatic accessories Pneumatic actuators & grippers Pneumatic valves & controls Quick disconnects Rotary actuators Rubber & thermoplastic hose & couplings Structural extrusions Thermoplastic tubing & fittings Vacuum generators, cups & sensors

Process Control

Key Markets

Alternative fuels Biopharmaceuticals Chemical & refining Food & beverage Marine & shipbuilding Medical & dental Microelectronics Nuclear Power Offshore oil exploration Pharmaceuticals Power generation Pulp & paper Water/wastewater

Kev Products Analytical Instruments Analytical sample conditioning products & systems Chemical injection fittings & valves Fluoropolymer chemical delivery fittings, valves & pumps High purity gas delivery fittings, valves, regulators & digital flow controllers Industrial mass flow meters/ controllers Permanent no-weld tube fittings Precision industrial regulators & flow controllers Process control double block & bleeds Process control fittings, valves, regulators & manifold valves

Sealing & Shielding

Key Markets

Aerospace Chemical processing Consumer Fluid power General industrial Information technology Life sciences Military Power generation Renewable energy Telecommunications Transportation

Key Products

Dynamic seals Elastomeric o-rings Electro-medical instrument design & assembly EMI shielding Extruded & precision-cut, fabricated elastomeric seals High temperature metal seals Homogeneous & inserted Medical device fabrication & assembly Metal & plastic retained composite seals Shielded ontical windows Silicone tubing & extrusions Thermal management Vibration dampening

Parker Worldwide

Europe, Middle East, Africa

AE - United Arab Emirates, Dubai Tel: +971 4 8127100 parker.me@parker.com

AT - Austria, St. Florian Tel: +43 (0)7224 66201 parker.austria@parker.com

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/NL/LU - Benelux, Hendrik Ido Ambacht Tel: +31 (0)541 585 000 parker.nl@parker.com

BG - Bulgaria. Sofia Tel: +359 2 980 1344 parker.bulgaria@parker.com

BY - Belarus. Minsk Tel: +48 (0)22 573 24 00 parker.poland@parker.com

CH - Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES - Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Piraeus Tel: +30 210 933 6450 parker.greece@parker.com

HU - Hungary, Budaörs Tel: +36 23 885 470 parker.hungary@parker.com IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IL - Israel

Tel: +39 02 45 19 21 parker.israel@parker.com

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

KZ - Kazakhstan, Almaty Tel: +7 7273 561 000 parker.easteurope@parker.com

NO - Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal

Tel: +351 22 999 7360 parker.portugal@parker.com

RO - Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Borås Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK - Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL - Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TR - Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tel: +48 (0)22 573 24 00 parker.poland@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

ZA - South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

North America

CA - Canada, Milton, Ontario Tel: +1 905 693 3000

US - USA, Cleveland Tel: +1 216 896 3000

Asia Pacific

AU - Australia, Castle Hill Tel: +61 (0)2-9634 7777

CN - China, Shanghai Tel: +86 21 2899 5000

HK - Hong Kong

Tel: +852 2428 8008

IN - India, Mumbai Tel: +91 22 6513 7081-85

JP - Japan, Tokyo Tel: +81 (0)3 6408 3901

KR - South Korea, Seoul Tel: +82 2 559 0400

MY - Malaysia, Shah Alam

Tel: +60 3 7849 0800

NZ - New Zealand, Mt Wellington

Tel: +64 9 574 1744

SG - Singapore Tel: +65 6887 6300

TH - Thailand, Bangkok Tel: +662 186 7000

TW - Taiwan. Taipei Tel: +886 2 2298 8987

South America

AR - Argentina, Buenos Aires

Tel: +54 3327 44 4129

BR - Brazil, Sao Jose dos Campos

Tel: +55 800 727 5374

CL - Chile, Santiago Tel: +56 2 623 1216

MX - Mexico, Toluca Tel: +52 72 2275 4200

(from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

US Product Information Centre Toll-free number: 1-800-27 27 537

EMEA Product Information Centre

